Semistable reduction of modular curves associated with maximal subgroups in prime level
Documenta mathematica, Tome 26 (2021), pp. 231-269.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We complete the description of semistable models for modular curves associated with maximal subgroups of $\mathrm{GL}_2 (\mathbb{F}_p )$ (for $p$ any prime, $p>5)$. That is, in the new cases of non-split Cartan modular curves and exceptional subgroups, we identify the irreducible components and singularities of the reduction $\mathrm{mod}\,\,p$, and the complete local rings at the singularities. We review the case of split Cartan modular curves. This description suffices for computing the group of connected components of the fibre at~$p$ of the Néron model of the Jacobian.
Classification : 11G18, 11G20, 14G35
Keywords: modular curves, maximal prime level subgroups, non-split Cartan, semistable models
@article{DOCMA_2021__26__a50,
     author = {Edixhoven, Bas and Parent, Pierre},
     title = {Semistable reduction of modular curves associated with maximal subgroups in prime level},
     journal = {Documenta mathematica},
     pages = {231--269},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a50/}
}
TY  - JOUR
AU  - Edixhoven, Bas
AU  - Parent, Pierre
TI  - Semistable reduction of modular curves associated with maximal subgroups in prime level
JO  - Documenta mathematica
PY  - 2021
SP  - 231
EP  - 269
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a50/
LA  - en
ID  - DOCMA_2021__26__a50
ER  - 
%0 Journal Article
%A Edixhoven, Bas
%A Parent, Pierre
%T Semistable reduction of modular curves associated with maximal subgroups in prime level
%J Documenta mathematica
%D 2021
%P 231-269
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a50/
%G en
%F DOCMA_2021__26__a50
Edixhoven, Bas; Parent, Pierre. Semistable reduction of modular curves associated with maximal subgroups in prime level. Documenta mathematica, Tome 26 (2021), pp. 231-269. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a50/