Hecke $L$-functions and Fourier coefficients of covering Eisenstein series
Documenta mathematica, Tome 26 (2021), pp. 465-522.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We consider in this paper covering groups and Fourier coefficients of Eisenstein series for induced representations from certain distinguished theta representations. It is shown that one has global factorization of such Fourier coefficients, and the local unramified Whittaker function at the identity can be computed from the local scattering matrices. For a special family of covering groups of the general linear groups, we show that the Fourier coefficients of such Eisenstein series are reciprocals of Hecke $L$-functions, which recovers an earlier result by Suzuki for Kazhdan-Patterson covering groups. We also consider covers of the symplectic group and carry out a detailed analysis in the rank-two case.
Classification : 11F70, 22E50
Keywords: covering group, theta representation, Whittaker function, Eisenstein series, Fourier coefficients, Hecke \(L\)-function
@article{DOCMA_2021__26__a45,
     author = {Gao, Fan},
     title = {Hecke {\(L\)-functions} and {Fourier} coefficients of covering {Eisenstein} series},
     journal = {Documenta mathematica},
     pages = {465--522},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a45/}
}
TY  - JOUR
AU  - Gao, Fan
TI  - Hecke \(L\)-functions and Fourier coefficients of covering Eisenstein series
JO  - Documenta mathematica
PY  - 2021
SP  - 465
EP  - 522
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a45/
LA  - en
ID  - DOCMA_2021__26__a45
ER  - 
%0 Journal Article
%A Gao, Fan
%T Hecke \(L\)-functions and Fourier coefficients of covering Eisenstein series
%J Documenta mathematica
%D 2021
%P 465-522
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a45/
%G en
%F DOCMA_2021__26__a45
Gao, Fan. Hecke \(L\)-functions and Fourier coefficients of covering Eisenstein series. Documenta mathematica, Tome 26 (2021), pp. 465-522. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a45/