Algebraic connective $K$-theory of a Severi-Brauer variety with prescribed reduced behavior
Documenta mathematica, Tome 26 (2021), pp. 523-536.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that Chow groups of low dimension cycles are torsion free for a class of sufficiently generic Severi-Brauer varieties. Using a recent result of Karpenko, this allows us to compute the algebraic connective $K$-theory in low degrees for the same class of varieties. Independently of these results, we show that the associated graded ring for the topological filtration on the Grothendieck ring is torsion free in the same degrees for an arbitrary Severi-Brauer variety.
Classification : 14C35, 19L41, 14C25
Keywords: algebraic connective \(K\)-theory, Severi-Brauer varieties
@article{DOCMA_2021__26__a44,
     author = {Mackall, Eoin},
     title = {Algebraic connective {\(K\)-theory} of a {Severi-Brauer} variety with prescribed reduced behavior},
     journal = {Documenta mathematica},
     pages = {523--536},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a44/}
}
TY  - JOUR
AU  - Mackall, Eoin
TI  - Algebraic connective \(K\)-theory of a Severi-Brauer variety with prescribed reduced behavior
JO  - Documenta mathematica
PY  - 2021
SP  - 523
EP  - 536
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a44/
LA  - en
ID  - DOCMA_2021__26__a44
ER  - 
%0 Journal Article
%A Mackall, Eoin
%T Algebraic connective \(K\)-theory of a Severi-Brauer variety with prescribed reduced behavior
%J Documenta mathematica
%D 2021
%P 523-536
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a44/
%G en
%F DOCMA_2021__26__a44
Mackall, Eoin. Algebraic connective \(K\)-theory of a Severi-Brauer variety with prescribed reduced behavior. Documenta mathematica, Tome 26 (2021), pp. 523-536. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a44/