Morel homotopy modules and Milnor-Witt cycle modules
Documenta mathematica, Tome 26 (2021), pp. 617-659.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study the cohomology theory and the canonical Milnor-Witt cycle module associated to a motivic spectrum. We prove that the heart of Morel-Voevodsky stable homotopy category over a perfect field (equipped with its homotopy t-structure) is equivalent to the category of Milnor-Witt cycle modules, thus generalising Déglise's thesis. As a corollary, we recover a theorem of Ananyevskiy and Neshitov, and we prove that the Milnor-Witt K-theory groups are birational invariants.
Classification : 14C17, 14C35, 11E81
Keywords: cycle modules, Milnor-Witt \(K\)-theory, Chow-Witt groups, \(\mathbb A^1\)-homotopy, birational invariants
@article{DOCMA_2021__26__a40,
     author = {Feld, Niels},
     title = {Morel homotopy modules and {Milnor-Witt} cycle modules},
     journal = {Documenta mathematica},
     pages = {617--659},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a40/}
}
TY  - JOUR
AU  - Feld, Niels
TI  - Morel homotopy modules and Milnor-Witt cycle modules
JO  - Documenta mathematica
PY  - 2021
SP  - 617
EP  - 659
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a40/
LA  - en
ID  - DOCMA_2021__26__a40
ER  - 
%0 Journal Article
%A Feld, Niels
%T Morel homotopy modules and Milnor-Witt cycle modules
%J Documenta mathematica
%D 2021
%P 617-659
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a40/
%G en
%F DOCMA_2021__26__a40
Feld, Niels. Morel homotopy modules and Milnor-Witt cycle modules. Documenta mathematica, Tome 26 (2021), pp. 617-659. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a40/