Positively curved Riemannian orbifolds and Alexandrov spaces with circle symmetry in dimension $4$
Documenta mathematica, Tome 26 (2021), pp. 1889-1927.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We classify positively curved Alexandrov spaces of dimension $4$ with an isometric circle action up to equivariant homeomorphism, subject to a certain additional condition on the infinitesimal geometry near fixed points which we conjecture is always satisfied. \par As a corollary, we also classify positively curved Riemannian orbifolds of dimension $4$ with an isometric circle action.
Classification : 53C23, 51K10, 53C20, 57R18
Keywords: Alexandrov spaces, circle action, condition Q, orbifold classification
@article{DOCMA_2021__26__a4,
     author = {Harvey, John and Searle, Catherine},
     title = {Positively curved {Riemannian} orbifolds and {Alexandrov} spaces with circle symmetry in dimension \(4\)},
     journal = {Documenta mathematica},
     pages = {1889--1927},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a4/}
}
TY  - JOUR
AU  - Harvey, John
AU  - Searle, Catherine
TI  - Positively curved Riemannian orbifolds and Alexandrov spaces with circle symmetry in dimension \(4\)
JO  - Documenta mathematica
PY  - 2021
SP  - 1889
EP  - 1927
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a4/
LA  - en
ID  - DOCMA_2021__26__a4
ER  - 
%0 Journal Article
%A Harvey, John
%A Searle, Catherine
%T Positively curved Riemannian orbifolds and Alexandrov spaces with circle symmetry in dimension \(4\)
%J Documenta mathematica
%D 2021
%P 1889-1927
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a4/
%G en
%F DOCMA_2021__26__a4
Harvey, John; Searle, Catherine. Positively curved Riemannian orbifolds and Alexandrov spaces with circle symmetry in dimension \(4\). Documenta mathematica, Tome 26 (2021), pp. 1889-1927. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a4/