A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus
Documenta mathematica, Tome 26 (2021), pp. 675-711.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In the present paper, we first construct a pairing on the space of analytic distributions associated with $\text{GSp}_{2g}$. By considering the overconvergent parabolic cohomology groups and following the work of Johansson-Newton, we construct the cuspidal eigenvariety for $\text{GSp}_{2g}$. The pairing on the analytic distributions then induces a pairing on some coherent sheaves of the cuspidal eigenvariety. As an application, we follow the strategy of Bellaïche to study the ramification locus of the cuspidal eigenvariety over the corresponding weight space.
Classification : 11F46, 11F67, 11F85, 11G18
Keywords: eigenvarieties, overconvergent cohomology, \(p\)-adic \(L\)-functions
@article{DOCMA_2021__26__a38,
     author = {Wu, Ju-Feng},
     title = {A pairing on the cuspidal eigenvariety for {\(\text{GSp}_{2g}\)} and the ramification locus},
     journal = {Documenta mathematica},
     pages = {675--711},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a38/}
}
TY  - JOUR
AU  - Wu, Ju-Feng
TI  - A pairing on the cuspidal eigenvariety for \(\text{GSp}_{2g}\) and the ramification locus
JO  - Documenta mathematica
PY  - 2021
SP  - 675
EP  - 711
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a38/
LA  - en
ID  - DOCMA_2021__26__a38
ER  - 
%0 Journal Article
%A Wu, Ju-Feng
%T A pairing on the cuspidal eigenvariety for \(\text{GSp}_{2g}\) and the ramification locus
%J Documenta mathematica
%D 2021
%P 675-711
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a38/
%G en
%F DOCMA_2021__26__a38
Wu, Ju-Feng. A pairing on the cuspidal eigenvariety for \(\text{GSp}_{2g}\) and the ramification locus. Documenta mathematica, Tome 26 (2021), pp. 675-711. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a38/