Recovering a variable exponent
Documenta mathematica, Tome 26 (2021), pp. 713-731.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.
Classification : 34A55, 41A10, 34B15, 44A60, 28A25
Keywords: Calderón's problem, inverse problem, variable exponent, non-standard growth, Müntz-Szász theorem, approximation by polynomials, elliptic equation, quasilinear equation
@article{DOCMA_2021__26__a37,
     author = {Brander, Tommi and Siltakoski, Jarkko},
     title = {Recovering a variable exponent},
     journal = {Documenta mathematica},
     pages = {713--731},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a37/}
}
TY  - JOUR
AU  - Brander, Tommi
AU  - Siltakoski, Jarkko
TI  - Recovering a variable exponent
JO  - Documenta mathematica
PY  - 2021
SP  - 713
EP  - 731
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a37/
LA  - en
ID  - DOCMA_2021__26__a37
ER  - 
%0 Journal Article
%A Brander, Tommi
%A Siltakoski, Jarkko
%T Recovering a variable exponent
%J Documenta mathematica
%D 2021
%P 713-731
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a37/
%G en
%F DOCMA_2021__26__a37
Brander, Tommi; Siltakoski, Jarkko. Recovering a variable exponent. Documenta mathematica, Tome 26 (2021), pp. 713-731. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a37/