Hearts for commutative Noetherian rings: torsion pairs and derived equivalences
Documenta mathematica, Tome 26 (2021), pp. 829-871.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Over a commutative noetherian ring $R$, the prime spectrum controls, via the assignment of support, the structure of both $\mathsf{Mod}(R)$ and $\mathsf{D}(R)$. We show that, just like in $\mathsf{Mod}(R)$, the assignment of support classifies hereditary torsion pairs in the heart of any nondegenerate compactly generated $t$-structure of $\mathsf{D}(R)$. Moreover, we investigate whether these $t$-structures induce derived equivalences, obtaining a new source of Grothendieck categories which are derived equivalent to $\mathsf{Mod}(R)$.
Classification : 13D30, 13D09, 18E10, 18G80
Keywords: support, derived equivalence, HRS-tilting, hereditary torsion pairs, commutative Noetherian ring
@article{DOCMA_2021__26__a33,
     author = {Pavon, Sergio and Vit\'oria, Jorge},
     title = {Hearts for commutative {Noetherian} rings: torsion pairs and derived equivalences},
     journal = {Documenta mathematica},
     pages = {829--871},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a33/}
}
TY  - JOUR
AU  - Pavon, Sergio
AU  - Vitória, Jorge
TI  - Hearts for commutative Noetherian rings: torsion pairs and derived equivalences
JO  - Documenta mathematica
PY  - 2021
SP  - 829
EP  - 871
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a33/
LA  - en
ID  - DOCMA_2021__26__a33
ER  - 
%0 Journal Article
%A Pavon, Sergio
%A Vitória, Jorge
%T Hearts for commutative Noetherian rings: torsion pairs and derived equivalences
%J Documenta mathematica
%D 2021
%P 829-871
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a33/
%G en
%F DOCMA_2021__26__a33
Pavon, Sergio; Vitória, Jorge. Hearts for commutative Noetherian rings: torsion pairs and derived equivalences. Documenta mathematica, Tome 26 (2021), pp. 829-871. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a33/