The adic tame site
Documenta mathematica, Tome 26 (2021), pp. 873-945.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For every adic space $\mathscr{X}$ we construct a site $\mathscr{X}_t$, the tame site of $\mathscr{X}$. For a scheme $X$ over a base scheme $S$ we obtain a tame site by associating with $X/S$ an adic space $\mathrm{Spa}(X,S)$ and considering the tame site $\mathrm{Spa}(X,S)_t$. We examine the connection of the cohomology of the tame site with étale cohomology and compare its fundamental group with the conventional tame fundamental group. Finally, assuming resolution of singularities, for a regular scheme $X$ over a base scheme $S$ of characteristic $p > 0$ we prove a cohomological purity theorem for the constant sheaf $\mathbb{Z}/p\mathbb{Z}$ on $\mathrm{Spa}(X,S)_t$. As a corollary we obtain homotopy invariance for the tame cohomology groups of $\mathrm{Spa}(X,S)$.
Classification : 14F20, 14F35, 14G17, 14G22
Keywords: tame ramification, positive characteristic, Grothendieck topology
@article{DOCMA_2021__26__a32,
     author = {H\"ubner, Katharina},
     title = {The adic tame site},
     journal = {Documenta mathematica},
     pages = {873--945},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a32/}
}
TY  - JOUR
AU  - Hübner, Katharina
TI  - The adic tame site
JO  - Documenta mathematica
PY  - 2021
SP  - 873
EP  - 945
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a32/
LA  - en
ID  - DOCMA_2021__26__a32
ER  - 
%0 Journal Article
%A Hübner, Katharina
%T The adic tame site
%J Documenta mathematica
%D 2021
%P 873-945
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a32/
%G en
%F DOCMA_2021__26__a32
Hübner, Katharina. The adic tame site. Documenta mathematica, Tome 26 (2021), pp. 873-945. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a32/