Transfer maps in generalized group homology via submanifolds
Documenta mathematica, Tome 26 (2021), pp. 947-979.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $N \subset M$ be a submanifold embedding of spin manifolds of some codimension $k \geq 1$. A classical result of Gromov and Lawson, refined by Hanke, Pape and Schick, states that $M$ does not admit a metric of positive scalar curvature if $k = 2$ and the Dirac operator of $N$ has non-trivial index, provided that suitable geometric conditions on $N \subset M$ are satisfied. In the cases $k=1$ and $k=2$, Zeidler and Kubota, respectively, established more systematic results: There exists a transfer $\text{KO}_\ast(\text{C}^{\ast} \pi_1 M)\to \text{KO}_{\ast - k}(\text{C}^\ast \pi_1 N)$ which maps the index class of $M$ to the index class of $N$. The main goal of this article is to construct analogous transfer maps $E_\ast(\text{B}\pi_1M) \to E_{\ast-k}(\text{B}\pi_1N)$ for different generalized homology theories $E$ and suitable submanifold embeddings. The design criterion is that it is compatible with the transfer $E_\ast(M) \to E_{\ast-k}(N)$ induced by the inclusion $N \subset M$ for a chosen orientation on the normal bundle. Under varying restrictions on homotopy groups and the normal bundle, we construct transfers in the following cases in particular: In ordinary homology, it works for all codimensions. This slightly generalizes a result of Engel and simplifies his proof. In complex K-homology, we achieve it for $k \leq 3$. For $k \leq 2$, we have a transfer on the equivariant KO-homology of the classifying space for proper actions.
Classification : 55N20, 55N22, 55N91, 19K35
Keywords: transfer maps, geneneralized cohomology, group cohomology, codimension 2 submanifold obstruction to positive scalar curvature
@article{DOCMA_2021__26__a31,
     author = {Nitsche, Martin and Schick, Thomas and Zeidler, Rudolf},
     title = {Transfer maps in generalized group homology via submanifolds},
     journal = {Documenta mathematica},
     pages = {947--979},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a31/}
}
TY  - JOUR
AU  - Nitsche, Martin
AU  - Schick, Thomas
AU  - Zeidler, Rudolf
TI  - Transfer maps in generalized group homology via submanifolds
JO  - Documenta mathematica
PY  - 2021
SP  - 947
EP  - 979
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a31/
LA  - en
ID  - DOCMA_2021__26__a31
ER  - 
%0 Journal Article
%A Nitsche, Martin
%A Schick, Thomas
%A Zeidler, Rudolf
%T Transfer maps in generalized group homology via submanifolds
%J Documenta mathematica
%D 2021
%P 947-979
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a31/
%G en
%F DOCMA_2021__26__a31
Nitsche, Martin; Schick, Thomas; Zeidler, Rudolf. Transfer maps in generalized group homology via submanifolds. Documenta mathematica, Tome 26 (2021), pp. 947-979. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a31/