Projective bundle theorem in MW-motivic cohomology
Documenta mathematica, Tome 26 (2021), pp. 1045-1083.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that $\widetilde{CH}^*(\mathbb{P}(E))$ is determined by $\widetilde{CH}^*(X), \widetilde{CH}^*(X,det(E)^{\vee}), CH^*(X)$ and $Sq^2$ for smooth quasi-projective schemes $X$ and vector bundles $E$ over $X$ with $e(E^{\vee})=0\in H^n(X,W(det(E)))$, provided that $_2CH^*(X)=0$. \par As an application, we compute the MW-motives of blow-ups with smooth centers. Moreover, we discuss the invariance of Chow-Witt cycles of projective bundles under automorphisms of vector bundles.
Classification : 14F42, 11E81, 19
Keywords: MW-motivic cohomology, Chow-Witt ring, projective bundle theorem
@article{DOCMA_2021__26__a29,
     author = {Yang, Nanjun},
     title = {Projective bundle theorem in {MW-motivic} cohomology},
     journal = {Documenta mathematica},
     pages = {1045--1083},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a29/}
}
TY  - JOUR
AU  - Yang, Nanjun
TI  - Projective bundle theorem in MW-motivic cohomology
JO  - Documenta mathematica
PY  - 2021
SP  - 1045
EP  - 1083
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a29/
LA  - en
ID  - DOCMA_2021__26__a29
ER  - 
%0 Journal Article
%A Yang, Nanjun
%T Projective bundle theorem in MW-motivic cohomology
%J Documenta mathematica
%D 2021
%P 1045-1083
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a29/
%G en
%F DOCMA_2021__26__a29
Yang, Nanjun. Projective bundle theorem in MW-motivic cohomology. Documenta mathematica, Tome 26 (2021), pp. 1045-1083. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a29/