Algebraic slice spectral sequences
Documenta mathematica, Tome 26 (2021), pp. 1085-1119.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For certain motivic spectra, we construct a square of spectral sequences relating the effective slice spectral sequence and the motivic Adams spectral sequence. We show the square can be constructed for connective algebraic K-theory, motivic Morava K-theory, and truncated motivic Brown-Peterson spectra. In these cases, we show that the $\mathbb{R}$-motivic effective slice spectral sequence is completely determined by the $\rho$-Bockstein spectral sequence. Using results of Heard, we also obtain applications to the Hill-Hopkins-Ravenel slice spectral sequences for connective Real K-theory, Real Morava K-theory, and truncated Real Brown-Peterson spectra.
Classification : 14F42, 55P42, 55P91, 55T05, 55T15
Keywords: motivic Adams spectral sequence, slice spectral sequence, algebraic slice spectral sequence
@article{DOCMA_2021__26__a28,
     author = {Culver, Dominic Leon and Kong, Hana Jia and Quigley, J. D.},
     title = {Algebraic slice spectral sequences},
     journal = {Documenta mathematica},
     pages = {1085--1119},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a28/}
}
TY  - JOUR
AU  - Culver, Dominic Leon
AU  - Kong, Hana Jia
AU  - Quigley, J. D.
TI  - Algebraic slice spectral sequences
JO  - Documenta mathematica
PY  - 2021
SP  - 1085
EP  - 1119
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a28/
LA  - en
ID  - DOCMA_2021__26__a28
ER  - 
%0 Journal Article
%A Culver, Dominic Leon
%A Kong, Hana Jia
%A Quigley, J. D.
%T Algebraic slice spectral sequences
%J Documenta mathematica
%D 2021
%P 1085-1119
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a28/
%G en
%F DOCMA_2021__26__a28
Culver, Dominic Leon; Kong, Hana Jia; Quigley, J. D. Algebraic slice spectral sequences. Documenta mathematica, Tome 26 (2021), pp. 1085-1119. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a28/