On the James and Hilton-Milnor splittings, and the metastable EHP sequence
Documenta mathematica, Tome 26 (2021), pp. 1423-1464.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

This note provides modern proofs of some classical results in algebraic topology, such as the James Splitting, the Hilton-Milnor Splitting, and the metastable EHP sequence. We prove fundamental splitting results
$\Sigma \Omega \Sigma X \simeq \Sigma X \vee (X\wedge \Sigma\Omega \Sigma X) $
and
$ \Omega(X \vee Y) \simeq \Omega X\times \Omega Y\times \Omega \Sigma(\Omega X \wedge \Omega Y) $
in the maximal generality of an $\infty $-category with finite limits and pushouts in which pushouts squares remain pushouts after basechange along an arbitrary morphism (i.e., Mather's Second Cube Lemma holds). For connected objects, these imply the classical James and Hilton-Milnor splittings. Moreover, working in this generality shows that the James and Hilton-Milnor splittings hold in many new contexts, for example in: elementary $\infty $-topoi, profinite spaces, and motivic spaces over arbitrary base schemes. The splitting results in this last context extend Wickelgren and Williams' splitting result for motivic spaces over a perfect field [\textit{K. Wickelgren} and \textit{B. Williams}, Geom. Topol. 23, No. 4, 1691--1777 (2019; Zbl 1428.14032)]. We also give two proofs of the metastable EHP sequence in the setting of $\infty $-topoi: the first is a new, non-computational proof that only utilizes basic connectedness estimates involving the James filtration and the Blakers-Massey Theorem, while the second reduces to the classical computational proof.
Classification : 55P35, 55P40, 55P99, 55Q20, 18N60, 14F42
Keywords: infinity categories
@article{DOCMA_2021__26__a19,
     author = {Devalapurkar, Sanath and Haine, Peter},
     title = {On the {James} and {Hilton-Milnor} splittings, and the metastable {EHP} sequence},
     journal = {Documenta mathematica},
     pages = {1423--1464},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a19/}
}
TY  - JOUR
AU  - Devalapurkar, Sanath
AU  - Haine, Peter
TI  - On the James and Hilton-Milnor splittings, and the metastable EHP sequence
JO  - Documenta mathematica
PY  - 2021
SP  - 1423
EP  - 1464
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a19/
LA  - en
ID  - DOCMA_2021__26__a19
ER  - 
%0 Journal Article
%A Devalapurkar, Sanath
%A Haine, Peter
%T On the James and Hilton-Milnor splittings, and the metastable EHP sequence
%J Documenta mathematica
%D 2021
%P 1423-1464
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a19/
%G en
%F DOCMA_2021__26__a19
Devalapurkar, Sanath; Haine, Peter. On the James and Hilton-Milnor splittings, and the metastable EHP sequence. Documenta mathematica, Tome 26 (2021), pp. 1423-1464. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a19/