Ratio limits and Martin boundary
Documenta mathematica, Tome 26 (2021), pp. 1501-1528.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Consider an irreducible Markov chain which satisfies a ratio limit theorem, and let $\rho$ be the spectral radius of the chain. We investigate the relation of the the $\rho$-Martin boundary with the boundary induced by the $\rho$-harmonic kernel which appears in the ratio limit. Special emphasis is on random walks on non-amenable groups, specifically, free groups and hyperbolic groups.
Classification : 60J50, 60G50, 60J10
Keywords: random walk, ratio limit, \(\rho\)-harmonic functions, Martin boundary
@article{DOCMA_2021__26__a17,
     author = {Woess, Wolfgang},
     title = {Ratio limits and {Martin} boundary},
     journal = {Documenta mathematica},
     pages = {1501--1528},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a17/}
}
TY  - JOUR
AU  - Woess, Wolfgang
TI  - Ratio limits and Martin boundary
JO  - Documenta mathematica
PY  - 2021
SP  - 1501
EP  - 1528
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a17/
LA  - en
ID  - DOCMA_2021__26__a17
ER  - 
%0 Journal Article
%A Woess, Wolfgang
%T Ratio limits and Martin boundary
%J Documenta mathematica
%D 2021
%P 1501-1528
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a17/
%G en
%F DOCMA_2021__26__a17
Woess, Wolfgang. Ratio limits and Martin boundary. Documenta mathematica, Tome 26 (2021), pp. 1501-1528. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a17/