Erratum to: ``The minimal exact crossed product''
Documenta mathematica, Tome 26 (2021), pp. 1629-1632.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We point out some mistakes in our paper [ibid. 23, 2043--2077 (2018; Zbl 1430.46050)]. The most severe one is a gap in our proof that the smallest exact crossed product functor, as constructed in [loc. cit.], is automatically Morita compatible. We were not able to close this gap so far. So, at this time, we cannot conclude that the $C^*$-group algebra $C_{\epsilon_{M}}^*(G)=\mathbb{C}\rtimes_{\epsilon_{M}} G$ corresponding to the smallest exact \textit{Morita compatible} crossed-product functor $\rtimes_{\epsilon_{M}}$ is equal to the reduced group $C^*$-algebra $C_r^*(G)$.
Classification : 46L55, 46L08, 46L80
Keywords: exotic crossed products, Baum-Connes conjecture, exact groups, exotic group algebras
@article{DOCMA_2021__26__a13,
     author = {Buss, Alcides and Echterhoff, Siegfried and Willett, Rufus},
     title = {Erratum to: {``The} minimal exact crossed product''},
     journal = {Documenta mathematica},
     pages = {1629--1632},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a13/}
}
TY  - JOUR
AU  - Buss, Alcides
AU  - Echterhoff, Siegfried
AU  - Willett, Rufus
TI  - Erratum to: ``The minimal exact crossed product''
JO  - Documenta mathematica
PY  - 2021
SP  - 1629
EP  - 1632
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a13/
LA  - en
ID  - DOCMA_2021__26__a13
ER  - 
%0 Journal Article
%A Buss, Alcides
%A Echterhoff, Siegfried
%A Willett, Rufus
%T Erratum to: ``The minimal exact crossed product''
%J Documenta mathematica
%D 2021
%P 1629-1632
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a13/
%G en
%F DOCMA_2021__26__a13
Buss, Alcides; Echterhoff, Siegfried; Willett, Rufus. Erratum to: ``The minimal exact crossed product''. Documenta mathematica, Tome 26 (2021), pp. 1629-1632. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a13/