On a torsion analogue of the weight-monodromy conjecture
Documenta mathematica, Tome 26 (2021), pp. 1729-1770.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We formulate and study a torsion analogue of the weight-monodromy conjecture for a proper smooth scheme over a non-archimedean local field. We prove it for proper smooth schemes over equal characteristic non-archimedean local fields, abelian varieties, surfaces, varieties uniformized by Drinfeld upper half spaces, and set-theoretic complete intersections in projective smooth toric varieties. In the equal characteristic case, our methods rely on an ultraproduct variant of Weil II established by Cadoret.
Classification : 11G25, 14F20, 14C25
Keywords: weight-monodromy conjecture, weight spectral sequence, ultraproduct
@article{DOCMA_2021__26__a10,
     author = {Ito, Kazuhiro},
     title = {On a torsion analogue of the weight-monodromy conjecture},
     journal = {Documenta mathematica},
     pages = {1729--1770},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a10/}
}
TY  - JOUR
AU  - Ito, Kazuhiro
TI  - On a torsion analogue of the weight-monodromy conjecture
JO  - Documenta mathematica
PY  - 2021
SP  - 1729
EP  - 1770
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a10/
LA  - en
ID  - DOCMA_2021__26__a10
ER  - 
%0 Journal Article
%A Ito, Kazuhiro
%T On a torsion analogue of the weight-monodromy conjecture
%J Documenta mathematica
%D 2021
%P 1729-1770
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a10/
%G en
%F DOCMA_2021__26__a10
Ito, Kazuhiro. On a torsion analogue of the weight-monodromy conjecture. Documenta mathematica, Tome 26 (2021), pp. 1729-1770. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a10/