Intermediate extensions and crystalline distribution algebras
Documenta mathematica, Tome 26 (2021), pp. 2005-2059.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a connected split reductive group over a complete discrete valuation ring of mixed characteristic. We use the theory of intermediate extensions due to Abe-Caro and arithmetic Beilinson-Bernstein localization to classify irreducible modules over the crystalline distribution algebra of $G$ in terms of overconvergent isocrystals on locally closed subspaces in the flag variety of $G$. We treat the case of $\operatorname{SL}_2$ as an example.
Classification : 14F10, 14F30, 11F70, 14G20
Keywords: arithmetic differential operators, intermediate extensions, crystalline distributions
@article{DOCMA_2021__26__a1,
     author = {Huyghe, Christine and Schmidt, Tobias},
     title = {Intermediate extensions and crystalline distribution algebras},
     journal = {Documenta mathematica},
     pages = {2005--2059},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a1/}
}
TY  - JOUR
AU  - Huyghe, Christine
AU  - Schmidt, Tobias
TI  - Intermediate extensions and crystalline distribution algebras
JO  - Documenta mathematica
PY  - 2021
SP  - 2005
EP  - 2059
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a1/
LA  - en
ID  - DOCMA_2021__26__a1
ER  - 
%0 Journal Article
%A Huyghe, Christine
%A Schmidt, Tobias
%T Intermediate extensions and crystalline distribution algebras
%J Documenta mathematica
%D 2021
%P 2005-2059
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a1/
%G en
%F DOCMA_2021__26__a1
Huyghe, Christine; Schmidt, Tobias. Intermediate extensions and crystalline distribution algebras. Documenta mathematica, Tome 26 (2021), pp. 2005-2059. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a1/