Virtual equivariant Grothendieck-Riemann-Roch formula
Documenta mathematica, Tome 26 (2021), pp. 2061-2094.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

For a $G$-scheme $X$ with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of \textit{B. Fantechi} and \textit{L. Göttsche} [Geom. Topol. 14, No. 1, 83--115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over $\mathbb{C}$ with proper actions.
Classification : 14C15, 14C40, 14L30, 19L47
Keywords: Riemann-Roch theorems, equivariant Chow groups, equivariant \(K\)-theory
@article{DOCMA_2021__26__a0,
     author = {Ravi, Charanya and Sreedhar, Bhamidi},
     title = {Virtual equivariant {Grothendieck-Riemann-Roch} formula},
     journal = {Documenta mathematica},
     pages = {2061--2094},
     publisher = {mathdoc},
     volume = {26},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a0/}
}
TY  - JOUR
AU  - Ravi, Charanya
AU  - Sreedhar, Bhamidi
TI  - Virtual equivariant Grothendieck-Riemann-Roch formula
JO  - Documenta mathematica
PY  - 2021
SP  - 2061
EP  - 2094
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a0/
LA  - en
ID  - DOCMA_2021__26__a0
ER  - 
%0 Journal Article
%A Ravi, Charanya
%A Sreedhar, Bhamidi
%T Virtual equivariant Grothendieck-Riemann-Roch formula
%J Documenta mathematica
%D 2021
%P 2061-2094
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a0/
%G en
%F DOCMA_2021__26__a0
Ravi, Charanya; Sreedhar, Bhamidi. Virtual equivariant Grothendieck-Riemann-Roch formula. Documenta mathematica, Tome 26 (2021), pp. 2061-2094. http://geodesic.mathdoc.fr/item/DOCMA_2021__26__a0/