Fourier Transform of Rauzy Fractals and Point Spectrum of 1D Pisot Inflation Tilings
Documenta mathematica, Tome 25 (2020), pp. 2303-2337.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Primitive inflation tilings of the real line with finitely many tiles of natural length and a Pisot-Vijayaraghavan unit as inflation factor are considered. We present an approach to the pure point part of their diffraction spectrum on the basis of a Fourier matrix cocycle in internal space. This cocycle leads to a transfer matrix equation and thus to a closed expression of matrix Riesz product type for the Fourier transforms of the windows for the covering model sets. In general, these windows are complicated Rauzy fractals and thus difficult to handle. Equivalently, this approach permits a construction of the (always continuously representable) eigenfunctions for the translation dynamical system induced by the inflation rule. We review and further develop the underlying theory, and illustrate it with the family of Pisa substitutions, with special emphasis on the classic Tribonacci case.
Classification : 11K70, 42B10, 52C23, 37B10, 37F25, 28A80
Keywords: inflation tiling, Rauzy fractal, model set, mathematical diffraction, Fourier cocycle
@article{DOCMA_2020__25__a8,
     author = {Baake, Michael and Grimm, Uwe},
     title = {Fourier {Transform} of {Rauzy} {Fractals} and {Point} {Spectrum} of {1D} {Pisot} {Inflation} {Tilings}},
     journal = {Documenta mathematica},
     pages = {2303--2337},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a8/}
}
TY  - JOUR
AU  - Baake, Michael
AU  - Grimm, Uwe
TI  - Fourier Transform of Rauzy Fractals and Point Spectrum of 1D Pisot Inflation Tilings
JO  - Documenta mathematica
PY  - 2020
SP  - 2303
EP  - 2337
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a8/
LA  - en
ID  - DOCMA_2020__25__a8
ER  - 
%0 Journal Article
%A Baake, Michael
%A Grimm, Uwe
%T Fourier Transform of Rauzy Fractals and Point Spectrum of 1D Pisot Inflation Tilings
%J Documenta mathematica
%D 2020
%P 2303-2337
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a8/
%G en
%F DOCMA_2020__25__a8
Baake, Michael; Grimm, Uwe. Fourier Transform of Rauzy Fractals and Point Spectrum of 1D Pisot Inflation Tilings. Documenta mathematica, Tome 25 (2020), pp. 2303-2337. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a8/