Connection and Curvature on Bundles of Bergman and Hardy Spaces
Documenta mathematica, Tome 25 (2020), pp. 189-217.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We consider a complex domain $D\times V$ in the space $\mathbb{C}^m\times \mathbb{C}^n$ and a family of weighted Bergman spaces on $V$ defined by a weight $e^{-k\phi(z, w)}$ for a pluri-subharmonic function $\phi(z, w)$ with a quantization parameter $k$. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain $D$. We consider the natural covariant differentiation $\nabla_Z$ on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures $R^{(k)}(Z, Z)$ for large $k$ and for the induced connection $[\nabla_Z^{(k)}, T_f^{(k)}]$ on Toeplitz operators~$T_f$. In the special case when the domain $D$ is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for $[\nabla_Z^{(k)}, T_f^{(k)}]$ as Toeplitz operators. This generalizes earlier work of \textit{J. E. Andersen} in [Commun. Math. Phys. 255, No. 3, 727--745 (2005; Zbl 1079.53136)]. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of $D\times V$ replaced by a general strictly pseudoconvex domain $\mathcal{V}\subset\mathbb{C}^m\times\mathbb{C}^n$ fibered over a domain $D\subset\mathbb{C}^m$. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.
Classification : 32A36, 47B35, 32Q20, 32L05, 47B10
Keywords: Bergman space, bundle of Bergman spaces, Fock space, Fock bundle, Siegel domain, Chern connection and curvature, Toeplitz operator
@article{DOCMA_2020__25__a63,
     author = {Englis, Miroslav and Zhang, Genkai},
     title = {Connection and {Curvature} on {Bundles} of {Bergman} and {Hardy} {Spaces}},
     journal = {Documenta mathematica},
     pages = {189--217},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a63/}
}
TY  - JOUR
AU  - Englis, Miroslav
AU  - Zhang, Genkai
TI  - Connection and Curvature on Bundles of Bergman and Hardy Spaces
JO  - Documenta mathematica
PY  - 2020
SP  - 189
EP  - 217
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a63/
LA  - en
ID  - DOCMA_2020__25__a63
ER  - 
%0 Journal Article
%A Englis, Miroslav
%A Zhang, Genkai
%T Connection and Curvature on Bundles of Bergman and Hardy Spaces
%J Documenta mathematica
%D 2020
%P 189-217
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a63/
%G en
%F DOCMA_2020__25__a63
Englis, Miroslav; Zhang, Genkai. Connection and Curvature on Bundles of Bergman and Hardy Spaces. Documenta mathematica, Tome 25 (2020), pp. 189-217. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a63/