Hodge Numbers and Deformations of Fano 3-Folds
Documenta mathematica, Tome 25 (2020), pp. 267-307.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We show that index 1 Fano 3-folds which lie in weighted Grassmannians in their total anticanonical embedding have finite automorphism group, and we relate the deformation theory of any Fano 3-fold that has a K3 elephant to its Hodge theory. Combining these results with standard Gorenstein projection techniques calculates both the number of deformations and the Hodge numbers of most quasi-smooth Fano 3-folds in low codimension. This provides detailed new information for hundreds of families of Fano 3-folds.
Classification : 14J30, 14C30, 14E30
Keywords: Fano 3-fold, Hodge numbers, deformation theory
@article{DOCMA_2020__25__a60,
     author = {Brown, Gavin and Fatighenti, Enrico},
     title = {Hodge {Numbers} and {Deformations} of {Fano} {3-Folds}},
     journal = {Documenta mathematica},
     pages = {267--307},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a60/}
}
TY  - JOUR
AU  - Brown, Gavin
AU  - Fatighenti, Enrico
TI  - Hodge Numbers and Deformations of Fano 3-Folds
JO  - Documenta mathematica
PY  - 2020
SP  - 267
EP  - 307
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a60/
LA  - en
ID  - DOCMA_2020__25__a60
ER  - 
%0 Journal Article
%A Brown, Gavin
%A Fatighenti, Enrico
%T Hodge Numbers and Deformations of Fano 3-Folds
%J Documenta mathematica
%D 2020
%P 267-307
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a60/
%G en
%F DOCMA_2020__25__a60
Brown, Gavin; Fatighenti, Enrico. Hodge Numbers and Deformations of Fano 3-Folds. Documenta mathematica, Tome 25 (2020), pp. 267-307. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a60/