Essential Dimension and Genericity for Quiver Representations
Documenta mathematica, Tome 25 (2020), pp. 329-364.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study the essential dimension of representations of a fixed quiver with given dimension vector. We also consider the question of when the genericity property holds, i.e., when essential dimension and generic essential dimension agree. We classify the quivers satisfying the genericity property for every dimension vector and show that for every wild quiver the genericity property holds for infinitely many of its Schur roots. We also construct a large class of examples, where the genericity property fails. Our results are particularly detailed in the case of Kronecker quivers.
Classification : 16G20, 14A20
Keywords: essential dimension, genericity property, quiver representations, algebraic stack
@article{DOCMA_2020__25__a58,
     author = {Scavia, Federico},
     title = {Essential {Dimension} and {Genericity} for {Quiver} {Representations}},
     journal = {Documenta mathematica},
     pages = {329--364},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a58/}
}
TY  - JOUR
AU  - Scavia, Federico
TI  - Essential Dimension and Genericity for Quiver Representations
JO  - Documenta mathematica
PY  - 2020
SP  - 329
EP  - 364
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a58/
LA  - en
ID  - DOCMA_2020__25__a58
ER  - 
%0 Journal Article
%A Scavia, Federico
%T Essential Dimension and Genericity for Quiver Representations
%J Documenta mathematica
%D 2020
%P 329-364
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a58/
%G en
%F DOCMA_2020__25__a58
Scavia, Federico. Essential Dimension and Genericity for Quiver Representations. Documenta mathematica, Tome 25 (2020), pp. 329-364. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a58/