Pure Projective Tilting Modules
Documenta mathematica, Tome 25 (2020), pp. 401-424.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $T_R$ be a $1$-tilting module with tilting torsion pair $(\operatorname{Gen} T, \mathcal{F})$ in $\text{Mod}\text{-}R.$ The following conditions are proved to be equivalent: $(1) T$ is pure projective; $(2) \operatorname{Gen} T$ is a definable subcategory of $\text{Mod}\text{-}R$ with enough pure projectives; (3) both classes $\operatorname{Gen} T$ and $\mathcal{F}$ are finitely axiomatizable; and (4) the heart of the corresponding HRS $t$-structure (in the derived category $\mathcal{D}^b (\text{Mod}\text{-}R))$ is Grothendieck. This article explores in this context the question raised by Saorín if the Grothendieck condition on the heart of an HRS $t$-structure implies that it is equivalent to a module category. This amounts to asking if $T$ is tilting equivalent to a finitely presented module. This is resolved in the positive for a Krull-Schmidt ring, and for a commutative ring, a positive answer follows from a proof that every pure projective $1$-tilting module is projective. However, a general criterion is found that yields a negative answer to Saorín's Question and this criterion is satisfied by the universal enveloping algebra of a semisimple Lie algebra, a left and right noetherian domain.
Classification : 18E45, 18E10, 16B70, 16D90, 18G10, 18G80
Keywords: tilting module, pure projective module, \(t\)-structure, Grothendieck category, definable subcategory
@article{DOCMA_2020__25__a55,
     author = {Bazzoni, Silvana and Herzog, Ivo and P\v{r}{\'\i}hoda, Pavel and \v{S}aroch, Jan and Trlifaj, Jan},
     title = {Pure {Projective} {Tilting} {Modules}},
     journal = {Documenta mathematica},
     pages = {401--424},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a55/}
}
TY  - JOUR
AU  - Bazzoni, Silvana
AU  - Herzog, Ivo
AU  - Příhoda, Pavel
AU  - Šaroch, Jan
AU  - Trlifaj, Jan
TI  - Pure Projective Tilting Modules
JO  - Documenta mathematica
PY  - 2020
SP  - 401
EP  - 424
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a55/
LA  - en
ID  - DOCMA_2020__25__a55
ER  - 
%0 Journal Article
%A Bazzoni, Silvana
%A Herzog, Ivo
%A Příhoda, Pavel
%A Šaroch, Jan
%A Trlifaj, Jan
%T Pure Projective Tilting Modules
%J Documenta mathematica
%D 2020
%P 401-424
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a55/
%G en
%F DOCMA_2020__25__a55
Bazzoni, Silvana; Herzog, Ivo; Příhoda, Pavel; Šaroch, Jan; Trlifaj, Jan. Pure Projective Tilting Modules. Documenta mathematica, Tome 25 (2020), pp. 401-424. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a55/