Cdh Descent in Equivariant Homotopy $K$-Theory
Documenta mathematica, Tome 25 (2020), pp. 457-482.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We construct geometric models for classifying spaces of linear algebraic groups in $G$-equivariant motivic homotopy theory, where $G$ is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy $K$-theory of $G$-schemes (which we construct as an $E_\infty $-ring) is stable under arbitrary base change, and we deduce that the homotopy $K$-theory of $G$-schemes satisfies cdh descent.
Classification : 14F42, 14D23, 19D25, 14A20
Keywords: algebraic \(K\)-theory, algebraic stacks
@article{DOCMA_2020__25__a53,
     author = {Hoyois, Marc},
     title = {Cdh {Descent} in {Equivariant} {Homotopy} {\(K\)-Theory}},
     journal = {Documenta mathematica},
     pages = {457--482},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a53/}
}
TY  - JOUR
AU  - Hoyois, Marc
TI  - Cdh Descent in Equivariant Homotopy \(K\)-Theory
JO  - Documenta mathematica
PY  - 2020
SP  - 457
EP  - 482
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a53/
LA  - en
ID  - DOCMA_2020__25__a53
ER  - 
%0 Journal Article
%A Hoyois, Marc
%T Cdh Descent in Equivariant Homotopy \(K\)-Theory
%J Documenta mathematica
%D 2020
%P 457-482
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a53/
%G en
%F DOCMA_2020__25__a53
Hoyois, Marc. Cdh Descent in Equivariant Homotopy \(K\)-Theory. Documenta mathematica, Tome 25 (2020), pp. 457-482. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a53/