Frobenius and Spherical Codomains and Neighbourhoods
Documenta mathematica, Tome 25 (2020), pp. 483-525.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Given an exact functor between triangulated categories which admits both adjoints and whose cotwist is either zero or an autoequivalence, we show how to associate a unique full triangulated subcategory of the codomain on which the functor becomes either Frobenius or spherical, respectively. We illustrate our construction with examples coming from projective bundles and smooth blowups. This work generalises results about spherical subcategories obtained by Martin Kalck, David Ploog and the first author.
Classification : 18A40, 18G80, 14F08, 16E35
Keywords: exact functor with both adjoints, Frobenius functor, spherical functor, fully faithful functor, spherical subcategory, spherelike functor, spherelike object, thick subcategory
@article{DOCMA_2020__25__a52,
     author = {Hochenegger, Andreas and Meachan, Ciaran},
     title = {Frobenius and {Spherical} {Codomains} and {Neighbourhoods}},
     journal = {Documenta mathematica},
     pages = {483--525},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a52/}
}
TY  - JOUR
AU  - Hochenegger, Andreas
AU  - Meachan, Ciaran
TI  - Frobenius and Spherical Codomains and Neighbourhoods
JO  - Documenta mathematica
PY  - 2020
SP  - 483
EP  - 525
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a52/
LA  - en
ID  - DOCMA_2020__25__a52
ER  - 
%0 Journal Article
%A Hochenegger, Andreas
%A Meachan, Ciaran
%T Frobenius and Spherical Codomains and Neighbourhoods
%J Documenta mathematica
%D 2020
%P 483-525
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a52/
%G en
%F DOCMA_2020__25__a52
Hochenegger, Andreas; Meachan, Ciaran. Frobenius and Spherical Codomains and Neighbourhoods. Documenta mathematica, Tome 25 (2020), pp. 483-525. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a52/