Action of the Mapping Class Group on Character Varieties and Higgs Bundles
Documenta mathematica, Tome 25 (2020), pp. 841-868.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We consider the action of a finite subgroup of the mapping class group $\mathrm{Mod}(S)$ of an oriented compact surface $S$ of genus $g \geqslant 2$ on the moduli space $\mathcal{R}(S,G)$ of representations of $\pi_1(S)$ in a connected semisimple real Lie group $G$. Kerckhoff's solution of the Nielsen realization problem ensures the existence of an element $J$ in the Teichmüller space of $S$ for which $\Gamma$ can be realised as a subgroup of the group of automorphisms of $X=(S,J)$ which are holomorphic or antiholomorphic. We identify the fixed points of the action of $\Gamma$ on $\mathcal{R}(S,G)$ in terms of $G$-Higgs bundles on $X$ equipped with a certain twisted $\Gamma$-equivariant structure, where the twisting involves abelian and non-abelian group cohomology simultaneously. These, in turn, correspond to certain representations of the orbifold fundamental group. When the kernel of the isotropy representation of the maximal compact subgroup of $G$ is trivial, the fixed points can be described in terms of familiar objects on $Y=X/\Gamma^+$, where $\Gamma^+\subset \Gamma$ is the maximal subgroup of $\Gamma$ consisting of holomorphic automorphisms of $X$. If $\Gamma=\Gamma^+$ one obtains actual $\Gamma$-equivariant $G$-Higgs bundles on $X$, which in turn correspond with parabolic Higgs bundles on $Y=X/\Gamma$ (this generalizes work of Nasatyr \ Steer for $G=\mathrm{SL}(2,\mathbb{R})$ and Boden, Andersen \ Grove and Furuta \ Steer for $G=\mathrm{SU}(n))$. If on the other hand $\Gamma$ has antiholomorphic automorphisms, the objects on $Y=X/\Gamma^+$ correspond with pseudoreal parabolic Higgs bundles. This is a generalization in the parabolic setup of the pseudoreal Higgs bundles studied by the first author in collaboration with Biswas \ Hurtubise.
Classification : 14H60, 58D27, 58D29
Keywords: surface group representation, character variety, mapping class group, Higgs bundle, parabolic Higgs bundle, equivariant structure, moduli space
@article{DOCMA_2020__25__a43,
     author = {Garcia-Prada, Oscar and Wilkin, Graeme},
     title = {Action of the {Mapping} {Class} {Group} on {Character} {Varieties} and {Higgs} {Bundles}},
     journal = {Documenta mathematica},
     pages = {841--868},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a43/}
}
TY  - JOUR
AU  - Garcia-Prada, Oscar
AU  - Wilkin, Graeme
TI  - Action of the Mapping Class Group on Character Varieties and Higgs Bundles
JO  - Documenta mathematica
PY  - 2020
SP  - 841
EP  - 868
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a43/
LA  - en
ID  - DOCMA_2020__25__a43
ER  - 
%0 Journal Article
%A Garcia-Prada, Oscar
%A Wilkin, Graeme
%T Action of the Mapping Class Group on Character Varieties and Higgs Bundles
%J Documenta mathematica
%D 2020
%P 841-868
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a43/
%G en
%F DOCMA_2020__25__a43
Garcia-Prada, Oscar; Wilkin, Graeme. Action of the Mapping Class Group on Character Varieties and Higgs Bundles. Documenta mathematica, Tome 25 (2020), pp. 841-868. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a43/