On the Fibres of Mishchenko-Fomenko Systems
Documenta mathematica, Tome 25 (2020), pp. 1195-1239.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

This work is concerned with Mishchenko and Fomenko's celebrated theory of completely integrable systems on a complex semisimple Lie algebra $\mathfrak{g}$. Their theory associates a maximal Poisson-commutative subalgebra of $\mathbb{C}[\mathfrak{g}]$ to each regular element $a\in\mathfrak{g}$, and one can assemble free generators of this subalgebra into a moment map $F_a:\mathfrak{g}\rightarrow\mathbb{C}^b$. This leads one to pose basic structural questions about $F_a$ and its fibres, e.g. questions concerning the singular points and irreducible components of such fibres. \par We examine the structure of fibres in Mishchenko-Fomenko systems, building on the foundation laid by Bolsinov, Charbonnel-Moreau, Moreau, and others. This includes proving that the critical values of $F_a$ have codimension $1$ or $2$ in $\mathbb{C}^b$, and that each codimension is achievable in examples. Our results on singularities make use of a subalgebra $\mathfrak{b}^a\subseteq\mathfrak{g} $, defined to be the intersection of all Borel subalgebras of $\mathfrak{g}$ containing $a$. In the case of a non-nilpotent $a\in\mathfrak{g}_{\mathrm{reg}}$ and an element $x\in\mathfrak{b}^a$, we prove the following: $x+[\mathfrak{b}^a,\mathfrak{b}^a]$ lies in the singular locus of $F_a^{-1}(F_a(x))$, and the fibres through points in $\mathfrak{b}^a$ form a $\text{rank}(\mathfrak{g})$-dimensional family of singular fibres. We next consider the irreducible components of our fibres, giving a systematic way to construct many components via Mishchenko-Fomenko systems on Levi subalgebras $\mathfrak{l}\subseteq\mathfrak{g}$. In addition, we obtain concrete results on irreducible components that do not arise from the aforementioned construction. Our final main result is a recursive formula for the number of irreducible components in $F_a^{-1}(0)$, and it generalizes a result of Charbonnel-Moreau. Illustrative examples are included at the end of this paper.
Classification : 17B80, 17B63, 22E46
Keywords: integrable system, Mishchenko-Fomenko subalgebra, semisimple Lie algebra
@article{DOCMA_2020__25__a33,
     author = {Crooks, Peter and Roeser, Markus},
     title = {On the {Fibres} of {Mishchenko-Fomenko} {Systems}},
     journal = {Documenta mathematica},
     pages = {1195--1239},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a33/}
}
TY  - JOUR
AU  - Crooks, Peter
AU  - Roeser, Markus
TI  - On the Fibres of Mishchenko-Fomenko Systems
JO  - Documenta mathematica
PY  - 2020
SP  - 1195
EP  - 1239
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a33/
LA  - en
ID  - DOCMA_2020__25__a33
ER  - 
%0 Journal Article
%A Crooks, Peter
%A Roeser, Markus
%T On the Fibres of Mishchenko-Fomenko Systems
%J Documenta mathematica
%D 2020
%P 1195-1239
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a33/
%G en
%F DOCMA_2020__25__a33
Crooks, Peter; Roeser, Markus. On the Fibres of Mishchenko-Fomenko Systems. Documenta mathematica, Tome 25 (2020), pp. 1195-1239. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a33/