Multipartite Rational Functions
Documenta mathematica, Tome 25 (2020), pp. 1285-1313.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Consider a tensor product of free algebras over a field $\Bbbk$, the so-called multipartite free algebra $\mathcal{A}=\Bbbk$. It is well-known that $\mathcal{A}$ is a domain, but not a fir nor even a Sylvester domain. Inspired by recent advances in free analysis, formal rational expressions over $\mathcal{A}$ together with their matrix representations in $\operatorname{Mat}_{n_{1}}(\Bbbk)\otimes\cdots\otimes\operatorname{Mat}_{n_{G}}(\Bbbk)$ are employed to construct a skew field of fractions $\mathcal{U}$ of $\mathcal{A}$, whose elements are called multipartite rational functions. It is shown that $\mathcal{U}$ is the universal skew field of fractions of $\mathcal{A}$ in the sense of Cohn. As a consequence a multipartite analog of Amitsur's theorem on rational identities relating evaluations in matrices over $\Bbbk$ to evaluations in skew fields is obtained. The characterization of $\mathcal{U}$ in terms of matrix evaluations fits naturally into the wider context of free noncommutative function theory, where multipartite rational functions are interpreted as higher order noncommutative rational functions with an associated difference-differential calculus and linear realization theory. Along the way an explicit construction of the universal skew field of fractions of $D\otimes \Bbbk$
Classification : 16K40, 12E15, 47A56, 16R50
Keywords: universal skew field of fractions, noncommutative rational function, free skew field, tensor product of free algebras, multipartite rational function, free function theory
@article{DOCMA_2020__25__a30,
     author = {Klep, Igor and Vinnikov, Victor and Vol\v{c}i\v{c}, Jurij},
     title = {Multipartite {Rational} {Functions}},
     journal = {Documenta mathematica},
     pages = {1285--1313},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a30/}
}
TY  - JOUR
AU  - Klep, Igor
AU  - Vinnikov, Victor
AU  - Volčič, Jurij
TI  - Multipartite Rational Functions
JO  - Documenta mathematica
PY  - 2020
SP  - 1285
EP  - 1313
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a30/
LA  - en
ID  - DOCMA_2020__25__a30
ER  - 
%0 Journal Article
%A Klep, Igor
%A Vinnikov, Victor
%A Volčič, Jurij
%T Multipartite Rational Functions
%J Documenta mathematica
%D 2020
%P 1285-1313
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a30/
%G en
%F DOCMA_2020__25__a30
Klep, Igor; Vinnikov, Victor; Volčič, Jurij. Multipartite Rational Functions. Documenta mathematica, Tome 25 (2020), pp. 1285-1313. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a30/