Generic Smooth Representations
Documenta mathematica, Tome 25 (2020), pp. 2473-2485.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $F$ be a non-archimedean local field. In this paper we explore genericity of irreducible smooth representations of $GL_n(F)$ by restriction to a maximal compact subgroup $K$ of $GL_n(F)$. Let $(J, \lambda)$ be a Bushnell-Kutzko type for a Bernstein component $\Omega $. The work of Schneider-Zink gives an irreducible $K$-representation $\sigma_{min}(\lambda)$, which appears with multiplicity one in $\text{Ind}_J^K \lambda $. Let $\pi$ be an irreducible smooth representation of $GL_n(F)$ in $\Omega $. We will prove that $\pi$ is generic if and only if $\sigma_{min}(\lambda)$ is contained in $\pi $, in which case it occurs with multiplicity one.
Classification : 22E50, 11F70, 11F85
Keywords: representations, \(p\)-adic groups
@article{DOCMA_2020__25__a3,
     author = {Pyvovarov, Alexandre},
     title = {Generic {Smooth} {Representations}},
     journal = {Documenta mathematica},
     pages = {2473--2485},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a3/}
}
TY  - JOUR
AU  - Pyvovarov, Alexandre
TI  - Generic Smooth Representations
JO  - Documenta mathematica
PY  - 2020
SP  - 2473
EP  - 2485
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a3/
LA  - en
ID  - DOCMA_2020__25__a3
ER  - 
%0 Journal Article
%A Pyvovarov, Alexandre
%T Generic Smooth Representations
%J Documenta mathematica
%D 2020
%P 2473-2485
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a3/
%G en
%F DOCMA_2020__25__a3
Pyvovarov, Alexandre. Generic Smooth Representations. Documenta mathematica, Tome 25 (2020), pp. 2473-2485. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a3/