Nonarchimedean Analytic Cyclic Homology
Documenta mathematica, Tome 25 (2020), pp. 1353-1419.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $V$ be a complete discrete valuation ring with fraction field $F$ of characteristic zero and with residue field $\mathbb{F}$. We introduce analytic cyclic homology of complete torsion-free bornological algebras over $V$. We prove that it is homotopy invariant, stable, invariant under certain nilpotent extensions, and satisfies excision. We use these properties to compute it for tensor products with dagger completions of Leavitt path algebras. If $R$ is a smooth commutative $V$-algebra of relative dimension $1$, then we identify the analytic cyclic homology of its dagger completion with Berthelot's rigid cohomology of $R\otimes_V\mathbb{F}$.
Classification : 19D55, 14F30, 14F40, 14G22, 13D03, 16S88
Keywords: cyclic homology, dagger algebra, bornological algebra, Leavitt path algebra, excision, Cuntz-Quillen theory
@article{DOCMA_2020__25__a28,
     author = {Corti\~nas, Guillermo and Meyer, Ralf and Mukherjee, Devarshi},
     title = {Nonarchimedean {Analytic} {Cyclic} {Homology}},
     journal = {Documenta mathematica},
     pages = {1353--1419},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a28/}
}
TY  - JOUR
AU  - Cortiñas, Guillermo
AU  - Meyer, Ralf
AU  - Mukherjee, Devarshi
TI  - Nonarchimedean Analytic Cyclic Homology
JO  - Documenta mathematica
PY  - 2020
SP  - 1353
EP  - 1419
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a28/
LA  - en
ID  - DOCMA_2020__25__a28
ER  - 
%0 Journal Article
%A Cortiñas, Guillermo
%A Meyer, Ralf
%A Mukherjee, Devarshi
%T Nonarchimedean Analytic Cyclic Homology
%J Documenta mathematica
%D 2020
%P 1353-1419
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a28/
%G en
%F DOCMA_2020__25__a28
Cortiñas, Guillermo; Meyer, Ralf; Mukherjee, Devarshi. Nonarchimedean Analytic Cyclic Homology. Documenta mathematica, Tome 25 (2020), pp. 1353-1419. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a28/