Profinite Groups with a Cyclotomic $p$-Orientation
Documenta mathematica, Tome 25 (2020), pp. 1881-1916.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $p$ be a prime. A continuous representation $\theta\colon G\to\text{GL}_1(\mathbb{Z}_p)$ of a profinite group $G$ is called a cyclotomic $p$-orientation if for all open subgroups $U\subseteq G$ and for all $k,n\geq1$ the natural maps $H^k(U,\mathbb{Z}_p(k)/p^n)\to H^k(U,\mathbb{Z}_p(k)/p)$ are surjective. Here $\mathbb{Z}_p(k)$ denotes the $\mathbb{Z}_p$-module of rank 1 with $U$-action induced by $\theta\vert_U^k$. By the Rost-Voevodsky theorem, the cyclotomic character of the absolute Galois group $G_{\mathbb{K}}$ of a field $\mathbb{K}$ is, indeed, a cyclotomic $p$-orientation of $G_{\mathbb{K}} $. We study profinite groups with a cyclotomic $p$-orientation. In particular, we show that cyclotomicity is preserved by several operations on profinite groups, and that Bloch-Kato pro-$p$ groups with a cyclotomic $p$-orientation satisfy a strong form of Tits' alternative and decompose as semi-direct product over a canonical abelian closed normal subgroup.
Classification : 12G05, 20E18, 12F10
Keywords: absolute Galois groups, Rost-Voevodsky theorem, elementary type conjecture
@article{DOCMA_2020__25__a19,
     author = {Quadrelli, Claudio and Weigel, Thomas S.},
     title = {Profinite {Groups} with a {Cyclotomic} {\(p\)-Orientation}},
     journal = {Documenta mathematica},
     pages = {1881--1916},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a19/}
}
TY  - JOUR
AU  - Quadrelli, Claudio
AU  - Weigel, Thomas S.
TI  - Profinite Groups with a Cyclotomic \(p\)-Orientation
JO  - Documenta mathematica
PY  - 2020
SP  - 1881
EP  - 1916
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a19/
LA  - en
ID  - DOCMA_2020__25__a19
ER  - 
%0 Journal Article
%A Quadrelli, Claudio
%A Weigel, Thomas S.
%T Profinite Groups with a Cyclotomic \(p\)-Orientation
%J Documenta mathematica
%D 2020
%P 1881-1916
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a19/
%G en
%F DOCMA_2020__25__a19
Quadrelli, Claudio; Weigel, Thomas S. Profinite Groups with a Cyclotomic \(p\)-Orientation. Documenta mathematica, Tome 25 (2020), pp. 1881-1916. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a19/