Strong $(\delta,n)$-Complements for Semi-Stable Morphisms
Documenta mathematica, Tome 25 (2020), pp. 1953-1996.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove the boundedness of global strong $(\delta,n)$-complements for generalized $\epsilon$-log canonical pairs of Fano-type. We also prove some partial results towards boundedness of local strong $(\delta,n)$-complements for semi-stable morphisms. As applications, we prove an effective generalized canonical bundle formula for generalized klt pairs and an effective generalized adjunction formula for exceptional generalized log canonical centers. Moreover, we prove that the existence of strong $(\delta,n)$-complements implies a conjecture due to McKernan concerning the singularities of the base of a Mori fiber space.
Classification : 14E30, 14F18
Keywords: complements, Fano-type varieties
@article{DOCMA_2020__25__a17,
     author = {Filipazzi, Stefano and Moraga, Joaqu{\'\i}n},
     title = {Strong {\((\delta,n)\)-Complements} for {Semi-Stable} {Morphisms}},
     journal = {Documenta mathematica},
     pages = {1953--1996},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a17/}
}
TY  - JOUR
AU  - Filipazzi, Stefano
AU  - Moraga, Joaquín
TI  - Strong \((\delta,n)\)-Complements for Semi-Stable Morphisms
JO  - Documenta mathematica
PY  - 2020
SP  - 1953
EP  - 1996
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a17/
LA  - en
ID  - DOCMA_2020__25__a17
ER  - 
%0 Journal Article
%A Filipazzi, Stefano
%A Moraga, Joaquín
%T Strong \((\delta,n)\)-Complements for Semi-Stable Morphisms
%J Documenta mathematica
%D 2020
%P 1953-1996
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a17/
%G en
%F DOCMA_2020__25__a17
Filipazzi, Stefano; Moraga, Joaquín. Strong \((\delta,n)\)-Complements for Semi-Stable Morphisms. Documenta mathematica, Tome 25 (2020), pp. 1953-1996. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a17/