Representation Theory of Disconnected Reductive Groups
Documenta mathematica, Tome 25 (2020), pp. 2149-2177.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study three fundamental topics in the representation theory of disconnected algebraic groups whose identity component is reductive: (i) the classification of irreducible representations; (ii) the existence and properties of Weyl and dual Weyl modules; and (iii) the decomposition map relating representations in characteristic $0$ and those in characteristic $p$ (for groups defined over discrete valuation rings of mixed characteristic). For each of these topics, we obtain natural generalizations of the well-known results for connected reductive groups.
Classification : 20G05, 17B10, 20C15
Keywords: disconnected reductive groups, Clifford theory
@article{DOCMA_2020__25__a11,
     author = {Achar, Pramod N. and Hardesty, William D. and Riche, Simon},
     title = {Representation {Theory} of {Disconnected} {Reductive} {Groups}},
     journal = {Documenta mathematica},
     pages = {2149--2177},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a11/}
}
TY  - JOUR
AU  - Achar, Pramod N.
AU  - Hardesty, William D.
AU  - Riche, Simon
TI  - Representation Theory of Disconnected Reductive Groups
JO  - Documenta mathematica
PY  - 2020
SP  - 2149
EP  - 2177
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a11/
LA  - en
ID  - DOCMA_2020__25__a11
ER  - 
%0 Journal Article
%A Achar, Pramod N.
%A Hardesty, William D.
%A Riche, Simon
%T Representation Theory of Disconnected Reductive Groups
%J Documenta mathematica
%D 2020
%P 2149-2177
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a11/
%G en
%F DOCMA_2020__25__a11
Achar, Pramod N.; Hardesty, William D.; Riche, Simon. Representation Theory of Disconnected Reductive Groups. Documenta mathematica, Tome 25 (2020), pp. 2149-2177. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a11/