Aspects of Enumerative Geometry with Quadratic Forms
Documenta mathematica, Tome 25 (2020), pp. 2179-2239.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Using the motivic stable homotopy category over a field $k$, a smooth variety $X$ over $k$ has an Euler characteristic $\chi(X/k)$ in the Grothendieck-Witt ring $\operatorname{GW}(k)$. The rank of $\chi(X/k)$ is the classical $\mathbb{Z}$-valued Euler characteristic, defined using singular cohomology or étale cohomology, and the signature of $\chi(X/k)$ under a real embedding $\sigma:k\to \mathbb{R}$ gives the topological Euler characteristic of the real points $X^\sigma(\mathbb{R})$. \par We develop tools to compute $\chi(X/k)$, assuming $k$ has characteristic $\neq 2$ and apply these to refine some classical formulas in enumerative geometry, such as formulas for the top Chern class of the dual, symmetric powers and tensor products of bundles, to identities for the Euler classes in Chow-Witt groups. We also refine the classical Riemann-Hurwitz formula to an identity in $\operatorname{GW}(k)$ and compute $\chi(X/k)$ for hypersurfaces in $\mathbb{P}^{n+1}_k$ defined by a polynomial of the form $\sum_{i=0}^{n+1}a_iX_i^m$; this latter includes the case of an arbitrary quadric hypersurface. \par This paper is a revision of [\textit{M. Levine},``Toward an enumerative geometry with quadratic forms'', Preprint, \url{arXiv:1703.03049v3}].
Classification : 14C17, 14F42
Keywords: Euler characteristics, Euler classes, Chow-Witt groups, Grothendieck-Witt ring
@article{DOCMA_2020__25__a10,
     author = {Levine, Marc},
     title = {Aspects of {Enumerative} {Geometry} with {Quadratic} {Forms}},
     journal = {Documenta mathematica},
     pages = {2179--2239},
     publisher = {mathdoc},
     volume = {25},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a10/}
}
TY  - JOUR
AU  - Levine, Marc
TI  - Aspects of Enumerative Geometry with Quadratic Forms
JO  - Documenta mathematica
PY  - 2020
SP  - 2179
EP  - 2239
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a10/
LA  - en
ID  - DOCMA_2020__25__a10
ER  - 
%0 Journal Article
%A Levine, Marc
%T Aspects of Enumerative Geometry with Quadratic Forms
%J Documenta mathematica
%D 2020
%P 2179-2239
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a10/
%G en
%F DOCMA_2020__25__a10
Levine, Marc. Aspects of Enumerative Geometry with Quadratic Forms. Documenta mathematica, Tome 25 (2020), pp. 2179-2239. http://geodesic.mathdoc.fr/item/DOCMA_2020__25__a10/