Voir la notice de l'article provenant de la source Electronic Library of Mathematics
$ \par \par F(z^2)=\frac{(1-z)F(z)-z}{1-z}. \par \par $ |
@article{DOCMA_2019__S1__a39, author = {Mahler, Kurt}, title = {Reprint: {Remarks} on a paper by {W.} {Schwarz} (1969)}, journal = {Documenta mathematica}, pages = {649--659}, publisher = {mathdoc}, volume = {Mahler Selecta}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a39/} }
Mahler, Kurt. Reprint: Remarks on a paper by W. Schwarz (1969). Documenta mathematica, Mahler Selecta (2019), pp. 649-659. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a39/