Reprint: An unsolved problem on the powers of $3/2$ (1968)
Documenta mathematica, Mahler Selecta (2019), pp. 639-648.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

One says that $\alpha>0$ is a $Z$-number if $0\le \{\alpha (3/2)^n\}1/2$, where $\{x\}$ denotes the fractional part of $x$. In this paper, while not showing existence, Mahler proves that the set of $Z$-numbers is at most countable. More specifically, Mahler shows that, up to $x$, there are at most $x^{0.7} Z$-numbers. \par Reprint of the author's paper [J. Aust. Math. Soc. 8, 313--321 (1968; Zbl 0155.09501)].
Classification : 11-03, 11J54
@article{DOCMA_2019__S1__a38,
     author = {Mahler, Kurt},
     title = {Reprint: {An} unsolved problem on the powers of \(3/2\) (1968)},
     journal = {Documenta mathematica},
     pages = {639--648},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a38/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: An unsolved problem on the powers of \(3/2\) (1968)
JO  - Documenta mathematica
PY  - 2019
SP  - 639
EP  - 648
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a38/
LA  - en
ID  - DOCMA_2019__S1__a38
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: An unsolved problem on the powers of \(3/2\) (1968)
%J Documenta mathematica
%D 2019
%P 639-648
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a38/
%G en
%F DOCMA_2019__S1__a38
Mahler, Kurt. Reprint: An unsolved problem on the powers of \(3/2\) (1968). Documenta mathematica, Mahler Selecta (2019), pp. 639-648. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a38/