and $Q(\boldsymbol{f})=N(\boldsymbol{f})/M(\boldsymbol{f})$. The quantity of concern is $C_{mn}:=\sup_{\boldsymbol{f}\in S_{mn}}Q(\boldsymbol{f}). $ In this paper, Mahler shows that
$C_{mn}\le 2(n^2-n)\lambda^m,$
where $\lambda1.91$. This is a significant improvement over the trivial bound of $C_{mn}\le 2^{m+1}(n-1)$. \par Reprint of the author's paper [Ill. J. Math. 8, 1--4 (1964; Zbl 0128.07101)].
@article{DOCMA_2019__S1__a36,
author = {Mahler, Kurt},
title = {Reprint: {A} remark on a paper of mine on polynomials (1964)},
journal = {Documenta mathematica},
pages = {625--629},
publisher = {mathdoc},
volume = {Mahler Selecta},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a36/}
}
TY - JOUR
AU - Mahler, Kurt
TI - Reprint: A remark on a paper of mine on polynomials (1964)
JO - Documenta mathematica
PY - 2019
SP - 625
EP - 629
VL - Mahler Selecta
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a36/
LA - en
ID - DOCMA_2019__S1__a36
ER -
%0 Journal Article
%A Mahler, Kurt
%T Reprint: A remark on a paper of mine on polynomials (1964)
%J Documenta mathematica
%D 2019
%P 625-629
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a36/
%G en
%F DOCMA_2019__S1__a36
Mahler, Kurt. Reprint: A remark on a paper of mine on polynomials (1964). Documenta mathematica, Mahler Selecta (2019), pp. 625-629. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a36/