Let $\|x\|$ denote the distance of the real number $x$ to the nearest integer. In this paper, Mahler proves that, if $u$ and $v$ are coprime integers satisfying $u>v\ge 2$ and $\varepsilon>0$ is an arbitrarily small positive number, the inequality \par
\par is satisfied by at most a finite number of positive integer solutions $n$. He uses this result to show that, except for a finite number of values $k$, \par
@article{DOCMA_2019__S1__a32,
author = {Mahler, Kurt},
title = {Reprint: {On} the fractional parts of the powers of a rational number. {II} (1957)},
journal = {Documenta mathematica},
pages = {595--598},
publisher = {mathdoc},
volume = {Mahler Selecta},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/}
}
TY - JOUR
AU - Mahler, Kurt
TI - Reprint: On the fractional parts of the powers of a rational number. II (1957)
JO - Documenta mathematica
PY - 2019
SP - 595
EP - 598
VL - Mahler Selecta
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/
LA - en
ID - DOCMA_2019__S1__a32
ER -
%0 Journal Article
%A Mahler, Kurt
%T Reprint: On the fractional parts of the powers of a rational number. II (1957)
%J Documenta mathematica
%D 2019
%P 595-598
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/
%G en
%F DOCMA_2019__S1__a32
Mahler, Kurt. Reprint: On the fractional parts of the powers of a rational number. II (1957). Documenta mathematica, Mahler Selecta (2019), pp. 595-598. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/