Reprint: On the fractional parts of the powers of a rational number. II (1957)
Documenta mathematica, Mahler Selecta (2019), pp. 595-598.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $\|x\|$ denote the distance of the real number $x$ to the nearest integer. In this paper, Mahler proves that, if $u$ and $v$ are coprime integers satisfying $u>v\ge 2$ and $\varepsilon>0$ is an arbitrarily small positive number, the inequality \par
$ \par \par \left\|\left(\frac{u}{v}\right)^n\right\|$
\par is satisfied by at most a finite number of positive integer solutions $n$. He uses this result to show that, except for a finite number of values $k$, \par
$ \par \par g(k)=2^k-\left\lfloor\left(\frac{3}{2}\right)^k\right\rfloor-2, \par \par $
\par where $g(k)$ is the function in Waring's problem. \par Reprint of the author's paper [Mathematika 4, 122--124 (1957; Zbl 0208.31002)].
Classification : 11-03, 11J25
@article{DOCMA_2019__S1__a32,
     author = {Mahler, Kurt},
     title = {Reprint: {On} the fractional parts of the powers of a rational number. {II} (1957)},
     journal = {Documenta mathematica},
     pages = {595--598},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: On the fractional parts of the powers of a rational number. II (1957)
JO  - Documenta mathematica
PY  - 2019
SP  - 595
EP  - 598
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/
LA  - en
ID  - DOCMA_2019__S1__a32
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: On the fractional parts of the powers of a rational number. II (1957)
%J Documenta mathematica
%D 2019
%P 595-598
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/
%G en
%F DOCMA_2019__S1__a32
Mahler, Kurt. Reprint: On the fractional parts of the powers of a rational number. II (1957). Documenta mathematica, Mahler Selecta (2019), pp. 595-598. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a32/