Reprint: On lattice points in $n$-dimensional star bodies (1946)
Documenta mathematica, Mahler Selecta (2019), pp. 483-520.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $F(X)=F(x_1,\ldots,x_n)$ be a continuous non-negative function of $X=(x_1,\ldots,x_n)$ that satisfies $F(tX)=|t|F(X)$ for all real numbers $t$. The set $K$ in $n$-dimensional Euclidean space $\mathbb{R}^n$ defined by $F(X)\leqslant 1$ is called a star body. In this paper, Mahler studies the lattices $\Lambda$ in $\mathbb{R}^n$ which are of minimum determinant and have no point except $(0,\ldots,0)$ inside $K$. He investigates how many points of such lattices lie on, or near to, the boundary of $K$, and considers in detail the case when $K$ admits an infinite group of linear transformations into itself. \par Reprint of the author's paper [Proc. R. Soc. Lond., Ser. A 187, 151--187 (1946; Zbl 0060.11710)].
Classification : 11-03, 11H16
@article{DOCMA_2019__S1__a27,
     author = {Mahler, Kurt},
     title = {Reprint: {On} lattice points in \(n\)-dimensional star bodies (1946)},
     journal = {Documenta mathematica},
     pages = {483--520},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a27/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: On lattice points in \(n\)-dimensional star bodies (1946)
JO  - Documenta mathematica
PY  - 2019
SP  - 483
EP  - 520
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a27/
LA  - en
ID  - DOCMA_2019__S1__a27
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: On lattice points in \(n\)-dimensional star bodies (1946)
%J Documenta mathematica
%D 2019
%P 483-520
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a27/
%G en
%F DOCMA_2019__S1__a27
Mahler, Kurt. Reprint: On lattice points in \(n\)-dimensional star bodies (1946). Documenta mathematica, Mahler Selecta (2019), pp. 483-520. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a27/