Reprint: On the number of integers which can be represented by a binary form (1938)
Documenta mathematica, Mahler Selecta (2019), pp. 475-481.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $F(x,y)$ be a binary form of degree $n\ge 3$ with integer coefficients and non-vanishing discriminant, and let $A(u)$ be the number of different positive integers $k\le u$, for which $|F(x,y)|=k$ has at least one solution in integers $x,y$. In this paper, using Mahler's $p$-adic generalisation of the Thue-Siegel theorem, Erdős and Mahler prove that
$\liminf_{u\to\infty} A(u)u^{-2/n}>0.$
\par Reprint of the authors' paper [J. Lond. Math. Soc. 13, 134--139 (1938; Zbl 0018.34401; JFM 64.0116.01)].
Classification : 11-03, 11E16, 11D85
@article{DOCMA_2019__S1__a26,
     author = {Erd\H{o}s, P\'al and Mahler, Kurt},
     title = {Reprint: {On} the number of integers which can be represented by a binary form (1938)},
     journal = {Documenta mathematica},
     pages = {475--481},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a26/}
}
TY  - JOUR
AU  - Erdős, Pál
AU  - Mahler, Kurt
TI  - Reprint: On the number of integers which can be represented by a binary form (1938)
JO  - Documenta mathematica
PY  - 2019
SP  - 475
EP  - 481
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a26/
LA  - en
ID  - DOCMA_2019__S1__a26
ER  - 
%0 Journal Article
%A Erdős, Pál
%A Mahler, Kurt
%T Reprint: On the number of integers which can be represented by a binary form (1938)
%J Documenta mathematica
%D 2019
%P 475-481
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a26/
%G en
%F DOCMA_2019__S1__a26
Erdős, Pál; Mahler, Kurt. Reprint: On the number of integers which can be represented by a binary form (1938). Documenta mathematica, Mahler Selecta (2019), pp. 475-481. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a26/