Reprint: Über die Dezimalbruchentwicklung gewisser Irrationalzahlen (1937)
Documenta mathematica, Mahler Selecta (2019), pp. 459-474.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $(n)_q$ denote the base-$q$ expansion of the integer $n$. The Champernowne number to the base $q$ is the concatenation of the base-$q$ expansions of the positive integers after a radix point; that is, the number
$0.(1)_q(2)_q(3)_q\cdots(n)_q\cdots. $
In this paper, Mahler shows that each of these numbers is transcendental, but is not a Liouville number. \par Reprint of the author's paper [Mathematica B, Zutphen 6, 22--36 (1937; Zbl 0018.11102; JFM 63.0155.03)].
Classification : 11-03, 11J81, 11J91
@article{DOCMA_2019__S1__a25,
     author = {Mahler, Kurt},
     title = {Reprint: {\"Uber} die {Dezimalbruchentwicklung} gewisser {Irrationalzahlen} (1937)},
     journal = {Documenta mathematica},
     pages = {459--474},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a25/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: Über die Dezimalbruchentwicklung gewisser Irrationalzahlen (1937)
JO  - Documenta mathematica
PY  - 2019
SP  - 459
EP  - 474
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a25/
LA  - en
ID  - DOCMA_2019__S1__a25
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: Über die Dezimalbruchentwicklung gewisser Irrationalzahlen (1937)
%J Documenta mathematica
%D 2019
%P 459-474
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a25/
%G en
%F DOCMA_2019__S1__a25
Mahler, Kurt. Reprint: Über die Dezimalbruchentwicklung gewisser Irrationalzahlen (1937). Documenta mathematica, Mahler Selecta (2019), pp. 459-474. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a25/