Voir la notice de l'article provenant de la source Electronic Library of Mathematics
$\sum_{n\ge 1}\frac{q^{2n}}{(1-q^{2n})^2},\quad \sum_{n\ge 1}\frac{q^{2n}}{(1-q^{2n})^4},\quad \sum_{n\ge 1}\frac{q^{2n}}{(1-q^{2n})^6}$ |
@article{DOCMA_2019__S1__a24, author = {Popken, Jan and Mahler, Kurt}, title = {Reprint: {Ein} neues {Prinzip} f\"ur {Transzendenzbeweise} (1935)}, journal = {Documenta mathematica}, pages = {449--457}, publisher = {mathdoc}, volume = {Mahler Selecta}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a24/} }
Popken, Jan; Mahler, Kurt. Reprint: Ein neues Prinzip für Transzendenzbeweise (1935). Documenta mathematica, Mahler Selecta (2019), pp. 449-457. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a24/