Reprint: Zur Approximation algebraischer Zahlen. I: Über den größten Primteiler binärer Formen (1933)
Documenta mathematica, Mahler Selecta (2019), pp. 333-366.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In 1908, Thue showed that, if $\zeta$ is a real algebraic number of degree $n$ and $\Theta$ is a positive number, the inequality
$\left|\frac{p}{q}-\zeta\right|\le q^{-\left(\frac{n}{2}+1+\Theta\right)}$
has only finitely many rational solutions $p/q$. Siegel, in 1920, showed that one can replace the exponent $\frac{n}{2}+1+\Theta$ by
$\beta=\min_{1\le s\le n-1}\left(\frac{n}{s+1}+s+\Theta\right). $
\par In this article, Mahler establishes the following $p$-adic extension of Siegel's result. Let $f(x)$ be an irreducible polynomial with rational integer coefficients of degree $n\ge 3$, let $P_1,P_2,\ldots,P_t$ be finitely many prime numbers and let $\zeta,\zeta_1,\zeta_2,\ldots,\zeta_t$ be real zero of $f(x)$, a $P_1$-adic zero of $f(x)$, a $P_2$-adic zero of $f(x), \ldots $, and a $P_t$-adic zero of $f(x)$, respectively. Mahler proves that, if $\beta$ is Siegel's exponent and $k\ge 1$ is fixed, the inequality
$\min\left\{1,\left|\tfrac{p}{q}-\zeta\right|\right\} \prod_{\tau=1}^t \min\{1,|p-q\zeta_\tau|_{P_\tau}\}\le k\, \max\{|p|,|q|\}^{-\beta}$
has finitely many solutions in reduced rational numbers $p/q$. \par Reprint of the author's paper [Math. Ann. 107, 691--730 (1933; Zbl 0006.10502; JFM 59.0220.01)]. For Part II see [Zbl 1465.11013].
Classification : 11-03, 11J68
@article{DOCMA_2019__S1__a19,
     author = {Mahler, Kurt},
     title = {Reprint: {Zur} {Approximation} algebraischer {Zahlen.} {I:} {\"Uber} den gr\"o{\ss}ten {Primteiler} bin\"arer {Formen} (1933)},
     journal = {Documenta mathematica},
     pages = {333--366},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a19/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: Zur Approximation algebraischer Zahlen. I: Über den größten Primteiler binärer Formen (1933)
JO  - Documenta mathematica
PY  - 2019
SP  - 333
EP  - 366
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a19/
LA  - en
ID  - DOCMA_2019__S1__a19
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: Zur Approximation algebraischer Zahlen. I: Über den größten Primteiler binärer Formen (1933)
%J Documenta mathematica
%D 2019
%P 333-366
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a19/
%G en
%F DOCMA_2019__S1__a19
Mahler, Kurt. Reprint: Zur Approximation algebraischer Zahlen. I: Über den größten Primteiler binärer Formen (1933). Documenta mathematica, Mahler Selecta (2019), pp. 333-366. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a19/