Reprint: Über das Maß der Menge aller $S$-Zahlen (1932)
Documenta mathematica, Mahler Selecta (2019), pp. 315-324.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, Mahler proves that the set of real numbers which are not $S$-numbers has Lebesgue zero measure. \par Reprint of the author's paper [Math. Ann. 106, 131--139 (1932; Zbl 0003.24602; JFM 58.0206.04)].
Classification : 11-03, 11J81
@article{DOCMA_2019__S1__a17,
     author = {Mahler, Kurt},
     title = {Reprint: {\"Uber} das {Ma{\ss}} der {Menge} aller {\(S\)-Zahlen} (1932)},
     journal = {Documenta mathematica},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {Mahler Selecta},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a17/}
}
TY  - JOUR
AU  - Mahler, Kurt
TI  - Reprint: Über das Maß der Menge aller \(S\)-Zahlen (1932)
JO  - Documenta mathematica
PY  - 2019
SP  - 315
EP  - 324
VL  - Mahler Selecta
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a17/
LA  - en
ID  - DOCMA_2019__S1__a17
ER  - 
%0 Journal Article
%A Mahler, Kurt
%T Reprint: Über das Maß der Menge aller \(S\)-Zahlen (1932)
%J Documenta mathematica
%D 2019
%P 315-324
%V Mahler Selecta
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a17/
%G en
%F DOCMA_2019__S1__a17
Mahler, Kurt. Reprint: Über das Maß der Menge aller \(S\)-Zahlen (1932). Documenta mathematica, Mahler Selecta (2019), pp. 315-324. http://geodesic.mathdoc.fr/item/DOCMA_2019__S1__a17/