Branched Projective Structures on a Riemann Surface and Logarithmic Connections
Documenta mathematica, Tome 24 (2019), pp. 2299-2337.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We study the set $\mathcal{P}_S$ consisting of all branched holomorphic projective structures on a compact Riemann surface $X$ of genus $g \geq 1$ and with a fixed branching divisor $S := \sum_{i=1}^d n_i\cdot x_i$, where $x_i \in X$. Under the hypothesis that $n_i,=1$, for all $i$, with $d$ a positive even integer such that $d \neq 2g-2$, we show that $\mathcal{P}_S$ coincides with a subset of the set of all logarithmic connections with singular locus $S$, satisfying certain geometric conditions, on the rank two holomorphic jet bundle $J^1(Q)$, where $Q$ is a fixed holomorphic line bundle on $X$ such that $Q^{\otimes 2}= TX \otimes \mathcal{O}_X(S)$. The space of all logarithmic connections of the above type is an affine space over the vector space $H^0(X, K^{\otimes 2}_X \otimes\mathcal{O}_X(S))$ of dimension $3g-3+d$. We conclude that $\mathcal{P}_S$ is a subset of this affine space that has codimenison $d$ at a generic point.
Classification : 30F10, 30F30
Keywords: Riemann surface, branched projective structure, logarithmic connection, quadratic differential
@article{DOCMA_2019__24__a9,
     author = {Biswas, Indranil and Dumitrescu, Sorin and Gupta, Subhojoy},
     title = {Branched {Projective} {Structures} on a {Riemann} {Surface} and {Logarithmic} {Connections}},
     journal = {Documenta mathematica},
     pages = {2299--2337},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a9/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Dumitrescu, Sorin
AU  - Gupta, Subhojoy
TI  - Branched Projective Structures on a Riemann Surface and Logarithmic Connections
JO  - Documenta mathematica
PY  - 2019
SP  - 2299
EP  - 2337
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a9/
LA  - en
ID  - DOCMA_2019__24__a9
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Dumitrescu, Sorin
%A Gupta, Subhojoy
%T Branched Projective Structures on a Riemann Surface and Logarithmic Connections
%J Documenta mathematica
%D 2019
%P 2299-2337
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a9/
%G en
%F DOCMA_2019__24__a9
Biswas, Indranil; Dumitrescu, Sorin; Gupta, Subhojoy. Branched Projective Structures on a Riemann Surface and Logarithmic Connections. Documenta mathematica, Tome 24 (2019), pp. 2299-2337. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a9/