Annihilating Wild Kernels
Documenta mathematica, Tome 24 (2019), pp. 2381-2422.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $L/K$ be a finite Galois extension of number fields with Galois group $G$. Let $p$ be an odd prime and $r>1$ be an integer. Assuming a conjecture of Schneider, we formulate a conjecture that relates special values of equivariant Artin $L$-series at $s=r$ to the compact support cohomology of the étale $p$-adic sheaf $\mathbb{Z}_p(r)$. We show that our conjecture is essentially equivalent to the $p$-part of the equivariant Tamagawa number conjecture for the pair $(h^0(\text{Spec}(L))(r),\mathbb{Z}[G])$. We derive from this explicit constraints on the Galois module structure of Banaszak's $p$-adic wild kernels.
Classification : 11R42, 19F27, 11R70
Keywords: \(K\)-theory, wild kernels, equivariant Tamagawa number conjecture, special \(L\)-values, Schneider's conjecture, annihilation
@article{DOCMA_2019__24__a7,
     author = {Nickel, Andreas},
     title = {Annihilating {Wild} {Kernels}},
     journal = {Documenta mathematica},
     pages = {2381--2422},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a7/}
}
TY  - JOUR
AU  - Nickel, Andreas
TI  - Annihilating Wild Kernels
JO  - Documenta mathematica
PY  - 2019
SP  - 2381
EP  - 2422
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a7/
LA  - en
ID  - DOCMA_2019__24__a7
ER  - 
%0 Journal Article
%A Nickel, Andreas
%T Annihilating Wild Kernels
%J Documenta mathematica
%D 2019
%P 2381-2422
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a7/
%G en
%F DOCMA_2019__24__a7
Nickel, Andreas. Annihilating Wild Kernels. Documenta mathematica, Tome 24 (2019), pp. 2381-2422. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a7/