Functoriality Properties of the Dual Group
Documenta mathematica, Tome 24 (2019), pp. 47-64.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $G$ be a connected reductive group. Previously, it was shown that for any $G$-variety $X$ one can define the dual group $G^\vee_X$ which admits a natural homomorphism with finite kernel to the Langlands dual group $G^\vee$ of $G$. Here, we prove that the dual group is functorial in the following sense: if there is a dominant $G$-morphism $X\to Y$ or an injective $G$-morphism $Y\to X$ then there is a unique homomorphism with finite kernel $G^\vee_Y\to G^\vee_X$ which is compatible with the homomorphisms to $G^\vee$.
Classification : 17B22, 14L30, 11F70
Keywords: spherical variety, Langlands dual group, root system, algebraic group, reductive group
@article{DOCMA_2019__24__a61,
     author = {Knop, Friedrich},
     title = {Functoriality {Properties} of the {Dual} {Group}},
     journal = {Documenta mathematica},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a61/}
}
TY  - JOUR
AU  - Knop, Friedrich
TI  - Functoriality Properties of the Dual Group
JO  - Documenta mathematica
PY  - 2019
SP  - 47
EP  - 64
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a61/
LA  - en
ID  - DOCMA_2019__24__a61
ER  - 
%0 Journal Article
%A Knop, Friedrich
%T Functoriality Properties of the Dual Group
%J Documenta mathematica
%D 2019
%P 47-64
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a61/
%G en
%F DOCMA_2019__24__a61
Knop, Friedrich. Functoriality Properties of the Dual Group. Documenta mathematica, Tome 24 (2019), pp. 47-64. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a61/