Localization for Gapped Dirac Hamiltonians with Random Perturbations: Application to Graphene Antidot Lattices
Documenta mathematica, Tome 24 (2019), pp. 65-93.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we study random perturbations of first order elliptic operators with periodic potentials. We are mostly interested in Hamiltonians modeling graphene antidot lattices with impurities. The unperturbed operator $H_0 := D_S + V_0$ is the sum of a Dirac-like operator $D_S$ plus a periodic matrix-valued potential $V_0$, and is assumed to have an open gap. The random potential $V_\omega$ is of Anderson-type with independent, identically distributed coupling constants and moving centers, with absolutely continuous probability distributions. We prove band edge localization, namely that there exists an interval of energies in the unperturbed gap where the almost sure spectrum of the family $H_\omega := H_0 +V_\omega$ is dense pure point, with exponentially decaying eigenfunctions, that give rise to dynamical localization.
Classification : 82D80, 82B20, 81Q10, 46N50, 34L15, 47A10
Keywords: Dirac operators, random potentials, localization
@article{DOCMA_2019__24__a60,
     author = {Barbaroux, Jean-Marie and Cornean, Horia D. and Zalczer, Sylvain},
     title = {Localization for {Gapped} {Dirac} {Hamiltonians} with {Random} {Perturbations:} {Application} to {Graphene} {Antidot} {Lattices}},
     journal = {Documenta mathematica},
     pages = {65--93},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a60/}
}
TY  - JOUR
AU  - Barbaroux, Jean-Marie
AU  - Cornean, Horia D.
AU  - Zalczer, Sylvain
TI  - Localization for Gapped Dirac Hamiltonians with Random Perturbations: Application to Graphene Antidot Lattices
JO  - Documenta mathematica
PY  - 2019
SP  - 65
EP  - 93
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a60/
LA  - en
ID  - DOCMA_2019__24__a60
ER  - 
%0 Journal Article
%A Barbaroux, Jean-Marie
%A Cornean, Horia D.
%A Zalczer, Sylvain
%T Localization for Gapped Dirac Hamiltonians with Random Perturbations: Application to Graphene Antidot Lattices
%J Documenta mathematica
%D 2019
%P 65-93
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a60/
%G en
%F DOCMA_2019__24__a60
Barbaroux, Jean-Marie; Cornean, Horia D.; Zalczer, Sylvain. Localization for Gapped Dirac Hamiltonians with Random Perturbations: Application to Graphene Antidot Lattices. Documenta mathematica, Tome 24 (2019), pp. 65-93. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a60/