The Density of Ramified Primes
Documenta mathematica, Tome 24 (2019), pp. 2423-2429.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $F$ be a number field, $\mathcal{O}$ be a domain with fraction field $\mathcal{K}$ of characteristic zero and $\rho:\text{Gal}(\overline F/F)\to\text{GL}_n(\mathcal{O})$ be a representation such that $\rho\otimes\overline{\mathcal{K}}$ is semisimple. If $\mathcal{O}$ admits a finite monomorphism from a power series ring with coefficients in a $p$-adic integer ring (resp. $\mathcal{O}$ is an affinoid algebra over a $p$-adic number field) and $\rho$ is continuous with respect to the maximal ideal adic topology (resp. the Banach algebra topology), then we prove that the set of ramified primes of $\rho$ is of density zero. If $\mathcal{O}$ is a complete local Noetherian ring over $\mathbb{Z}_p$ with finite residue field of characteristic $p,\rho$ is continuous with respect to the maximal ideal adic topology and the kernels of pure specializations of $\rho$ form a Zariski-dense subset of $\text{Spec}\mathcal{O}$, then we show that the set of ramified primes of $\rho$ is of density zero. These results are analogues, in the context of big Galois representations, of a result of Khare and Rajan, and are proved relying on their result.
Classification : 11F80
Keywords: Galois representations, ramification
@article{DOCMA_2019__24__a6,
     author = {Saha, Jyoti Prakash},
     title = {The {Density} of {Ramified} {Primes}},
     journal = {Documenta mathematica},
     pages = {2423--2429},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a6/}
}
TY  - JOUR
AU  - Saha, Jyoti Prakash
TI  - The Density of Ramified Primes
JO  - Documenta mathematica
PY  - 2019
SP  - 2423
EP  - 2429
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a6/
LA  - en
ID  - DOCMA_2019__24__a6
ER  - 
%0 Journal Article
%A Saha, Jyoti Prakash
%T The Density of Ramified Primes
%J Documenta mathematica
%D 2019
%P 2423-2429
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a6/
%G en
%F DOCMA_2019__24__a6
Saha, Jyoti Prakash. The Density of Ramified Primes. Documenta mathematica, Tome 24 (2019), pp. 2423-2429. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a6/