Subgroups of $\mathrm{Spin}(7)$ or $\mathrm{SO}(7)$ with Each Element Conjugate to Some Element of $\mathrm{G}_2$ and Applications to Automorphic Forms
Documenta mathematica, Tome 24 (2019), pp. 95-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

As is well-known, the compact groups $\mathrm{Spin}(7)$ and $\mathrm{SO}(7)$ both have a single conjugacy class of compact subgroups of exceptional type $\mathrm{G}_2$. We first show that if $\Gamma$ is a subgroup of $\mathrm{Spin}(7)$, and if each element of $\Gamma$ is conjugate to some element of $\mathrm{G}_2$, then $\Gamma$ itself is conjugate to a subgroup of $G_2$. The analogous statement for $\mathrm{SO}(7)$ turns out be false, and our main result is a classification of all the exceptions. They are the following groups, embedded in each case in $\mathrm{SO}(7)$ in a very specific way: $\mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})$, $\mathrm{SL}_2(\mathbb{Z}/3\mathbb{Z})$, $\mathbb{Z}/4\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, as well as the nonabelian subgroups of $\mathrm{GO}_2(\mathbb{C})$ with compact closure, similitude factors group $\{\pm 1\}$, and which are not isomorphic to the dihedral group of order 8. More generally, we consider the analogous problems in which the Euclidean space is replaced by a quadratic space of dimension 7 over an arbitrary field. This type of questions naturally arises in some formulation of a converse statement of Langlands' global functoriality conjecture, to which the results above have thus some applications. Moreover, we give necessary and sufficient local conditions on a cuspidal algebraic regular automorphic representation of $\mathrm{GL}_7$ over a totally real number field so that its associated $\ell$-adic Galois representations can be conjugate into $\mathrm{G}_2(\overline{\mathbb{Q}_\ell})$. We provide 11 examples over $\mathbb{Q}$ which are unramified at all primes.
Classification : 20G41, 22C05, 20G15, 11F80, 11R39
Keywords: exceptional group \(\mathrm{G}_2\), subgroups of \(\mathrm{SO}(7)\), automorphic forms, Galois representations, Langlands conjectures
@article{DOCMA_2019__24__a59,
     author = {Chenevier, Ga\"etan},
     title = {Subgroups of {\(\mathrm{Spin}(7)\)} or {\(\mathrm{SO}(7)\)} with {Each} {Element} {Conjugate} to {Some} {Element} of {\(\mathrm{G}_2\)} and {Applications} to {Automorphic} {Forms}},
     journal = {Documenta mathematica},
     pages = {95--161},
     publisher = {mathdoc},
     volume = {24},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a59/}
}
TY  - JOUR
AU  - Chenevier, Gaëtan
TI  - Subgroups of \(\mathrm{Spin}(7)\) or \(\mathrm{SO}(7)\) with Each Element Conjugate to Some Element of \(\mathrm{G}_2\) and Applications to Automorphic Forms
JO  - Documenta mathematica
PY  - 2019
SP  - 95
EP  - 161
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a59/
LA  - en
ID  - DOCMA_2019__24__a59
ER  - 
%0 Journal Article
%A Chenevier, Gaëtan
%T Subgroups of \(\mathrm{Spin}(7)\) or \(\mathrm{SO}(7)\) with Each Element Conjugate to Some Element of \(\mathrm{G}_2\) and Applications to Automorphic Forms
%J Documenta mathematica
%D 2019
%P 95-161
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a59/
%G en
%F DOCMA_2019__24__a59
Chenevier, Gaëtan. Subgroups of \(\mathrm{Spin}(7)\) or \(\mathrm{SO}(7)\) with Each Element Conjugate to Some Element of \(\mathrm{G}_2\) and Applications to Automorphic Forms. Documenta mathematica, Tome 24 (2019), pp. 95-161. http://geodesic.mathdoc.fr/item/DOCMA_2019__24__a59/